Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Cancer Res ; 84(6): 808-826, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38345497

ABSTRACT

Heterochromatin loss and genetic instability enhance cancer progression by favoring clonal diversity, yet uncontrolled replicative stress leads to mitotic catastrophe and inflammatory responses that promote immune rejection. KRAB domain-containing zinc finger proteins (KZFP) contribute to heterochromatin maintenance at transposable elements (TE). Here, we identified an association of upregulation of a cluster of primate-specific KZFPs with poor prognosis, increased copy-number alterations, and changes in the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL). Depleting two of these KZFPs targeting evolutionarily recent TEs, ZNF587 and ZNF417, impaired the proliferation of cells derived from DLBCL and several other tumor types. ZNF587 and ZNF417 depletion led to heterochromatin redistribution, replicative stress, and cGAS-STING-mediated induction of an interferon/inflammatory response, which enhanced susceptibility to macrophage-mediated phagocytosis and increased surface expression of HLA-I, together with presentation of a neoimmunopeptidome. Thus, cancer cells can exploit KZFPs to dampen TE-originating surveillance mechanisms, which likely facilitates clonal expansion, diversification, and immune evasion. SIGNIFICANCE: Upregulation of a cluster of primate-specific KRAB zinc finger proteins in cancer cells prevents replicative stress and inflammation by regulating heterochromatin maintenance, which could facilitate the development of improved biomarkers and treatments.


Subject(s)
Heterochromatin , Neoplasms , Animals , Heterochromatin/genetics , Zinc Fingers/genetics , DNA Transposable Elements , Primates/genetics , Inflammation/genetics , Neoplasms/genetics
2.
Cell Genom ; 4(2): 100497, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38295789

ABSTRACT

Growing evidence indicates that transposable elements (TEs) play important roles in evolution by providing genomes with coding and non-coding sequences. Identification of TE-derived functional elements, however, has relied on TE annotations in individual species, which limits its scope to relatively intact TE sequences. Here, we report a novel approach to uncover previously unannotated degenerate TEs (degTEs) by probing multiple ancestral genomes reconstructed from hundreds of species. We applied this method to the human genome and achieved a 10.8% increase in coverage over the most recent annotation. Further, we discovered that degTEs contribute to various cis-regulatory elements and transcription factor binding sites, including those of a known TE-controlling family, the KRAB zinc-finger proteins. We also report unannotated chimeric transcripts between degTEs and human genes expressed in embryos. This study provides a novel methodology and a freely available resource that will facilitate the investigation of TE co-option events on a full scale.


Subject(s)
DNA Transposable Elements , Regulatory Sequences, Nucleic Acid , Humans , DNA Transposable Elements/genetics , Genome, Human/genetics
3.
Infect Dis Ther ; 13(1): 173-187, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38221576

ABSTRACT

INTRODUCTION: COVID-19 remains a significant risk for the immunocompromised given their lower responsiveness to vaccination or infection. Therefore, passive immunity through long-acting monoclonal antibodies (mAbs) offers a needed approach for pre-exposure prophylaxis (PrEP). Our study evaluated safety, anti-SARS-CoV-2 neutralizing activity, nasal penetration, and pharmacokinetics (PK) of two half-life-extended investigational mAbs, AER001 and AER002, providing the first demonstration of upper airway penetration of mAbs with the LS-modification. METHODS: This randomized, double-blind, placebo-controlled phase I study enrolled healthy adults (n = 80) who received two long-acting COVID mAbs (AER001 and AER002), AER002 alone, or placebo. The dose ranged from 100 mg (mg) to 1200 mg per mAb component. The primary objective was to describe the safety and tolerability following intravenous (IV) administration. Secondary objectives were to describe PK, anti-drug antibodies (ADA), neutralization activity levels, and safety evaluation through 6 months of follow-up. RESULTS: The majority (97.6%) of the reported adverse events (AE) post administration were of grade 1 severity. There were no serious adverse events (SAE) or ADAs. AER001 and AER002 successfully achieved an extended half-life of 105 days and 97.5 days, respectively. Participants receiving AER001 and AER002 (300 mg each) or AER002 (300 mg) alone showed 15- and 26-fold higher neutralization levels against D614G and omicron BA.1 than the placebo group 24 h post-administration. Single 300 or 1200 mg IV dose of AER001 and AER002 resulted in nasal mucosa transudation of approximately 2.5% and 2.7%, respectively. CONCLUSION: AER001 and AER002 showed an acceptable safety profile and extended half-life. High serum neutralization activity was observed against D614G and Omicron BA.1 compared to the placebo group. These data support that LS-modified mAbs can achieve durability, safety, potency, and upper airway tissue penetration and will guide the development of the next generation of mAbs for COVID-19 prevention and treatment. TRIAL REGISTRATION: EudraCT Number 2022-001709-35 (COV-2022-001).

4.
Nat Commun ; 15(1): 749, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272908

ABSTRACT

Transposable elements (TEs) are prevalent repeats in the human genome, play a significant role in the regulome, and their disruption can contribute to tumorigenesis. However, TE influence on gene expression in cancer remains unclear. Here, we analyze 275 normal colon and 276 colorectal cancer samples from the SYSCOL cohort, discovering 10,231 and 5,199 TE-expression quantitative trait loci (eQTLs) in normal and tumor tissues, respectively, of which 376 are colorectal cancer specific eQTLs, likely due to methylation changes. Tumor-specific TE-eQTLs show greater enrichment of transcription factors, compared to shared TE-eQTLs suggesting specific regulation of their expression in tumor. Bayesian networks reveal 1,766 TEs as mediators of genetic effects, altering the expression of 1,558 genes, including 55 known cancer driver genes and show that tumor-specific TE-eQTLs trigger the driver capability of TEs. These insights expand our knowledge of cancer drivers, deepening our understanding of tumorigenesis and presenting potential avenues for therapeutic interventions.


Subject(s)
Colorectal Neoplasms , DNA Transposable Elements , Humans , DNA Transposable Elements/genetics , Bayes Theorem , Transcription Factors/metabolism , Carcinogenesis/genetics , Colorectal Neoplasms/genetics
5.
6.
Genome Biol ; 24(1): 258, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37950299

ABSTRACT

BACKGROUND: Transposable elements (TEs) have colonized the genomes of most metazoans, and many TE-embedded sequences function as cis-regulatory elements (CREs) for genes involved in a wide range of biological processes from early embryogenesis to innate immune responses. Because of their repetitive nature, TEs have the potential to form CRE platforms enabling the coordinated and genome-wide regulation of protein-coding genes by only a handful of trans-acting transcription factors (TFs). RESULTS: Here, we directly test this hypothesis through mathematical modeling and demonstrate that differences in expression at protein-coding genes alone are sufficient to estimate the magnitude and significance of TE-contributed cis-regulatory activities, even in contexts where TE-derived transcription fails to do so. We leverage hundreds of overexpression experiments and estimate that, overall, gene expression is influenced by TE-embedded CREs situated within approximately 500 kb of promoters. Focusing on the cis-regulatory potential of TEs within the gene regulatory network of human embryonic stem cells, we find that pluripotency-specific and evolutionarily young TE subfamilies can be reactivated by TFs involved in post-implantation embryogenesis. Finally, we show that TE subfamilies can be split into truly regulatorily active versus inactive fractions based on additional information such as matched epigenomic data, observing that TF binding may better predict TE cis-regulatory activity than differences in histone marks. CONCLUSION: Our results suggest that TE-embedded CREs contribute to gene regulation during and beyond gastrulation. On a methodological level, we provide a statistical tool that infers TE-dependent cis-regulation from RNA-seq data alone, thus facilitating the study of TEs in the next-generation sequencing era.


Subject(s)
DNA Transposable Elements , Gene Expression Regulation , Humans , Gene Regulatory Networks , Promoter Regions, Genetic , Protein Binding
7.
Nat Commun ; 14(1): 7302, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37952051

ABSTRACT

SARS-CoV-2 infection requires Spike protein-mediated fusion between the viral and cellular membranes. The fusogenic activity of Spike depends on its post-translational lipid modification by host S-acyltransferases, predominantly ZDHHC20. Previous observations indicate that SARS-CoV-2 infection augments the S-acylation of Spike when compared to mere Spike transfection. Here, we find that SARS-CoV-2 infection triggers a change in the transcriptional start site of the zdhhc20 gene, both in cells and in an in vivo infection model, resulting in a 67-amino-acid-long N-terminally extended protein with approx. 40 times higher Spike acylating activity, resulting in enhanced fusion of viruses with host cells. Furthermore, we observed the same induced transcriptional change in response to other challenges, such as chemically induced colitis and pore-forming toxins, indicating that SARS-CoV-2 hijacks an existing cell damage response pathway to optimize it fusion glycoprotein.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Membrane Fusion/physiology , Acyltransferases/genetics
8.
Nat Genet ; 55(12): 2023-2024, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973954
9.
J Infect ; 87(6): 524-537, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852477

ABSTRACT

OBJECTIVES: Due to the rapid evolution of SARS-CoV-2 to variants with reduced sensitivity to vaccine-induced humoral immunity and the near complete loss of protective efficacy of licensed therapeutic monoclonal antibodies, we isolated a potent, broad-spectrum neutralizing antibody that could potentially provide prophylactic protection to immunocompromised patient populations. METHODS: Spike-specific B-cell clones isolated from a vaccinated post-infected donor were profiled for those producing potent neutralizing antibodies against a panel of SARS-CoV-2 variants. The P4J15 antibody was further characterized to define the structural binding epitope, viral resistance, and in vivo efficacy. RESULTS: The P4J15 mAb shows <20 ng/ml neutralizing activity against all variants including the latest XBB.2.3 and EG.5.1 sub-lineages. Structural studies of P4J15 in complex with Omicron XBB.1 Spike show that the P4J15 epitope shares ∼93% of its buried surface area with the ACE2 contact region, consistent with an ACE2 mimetic antibody. In vitro selection of SARS-CoV-2 mutants escaping P4J15 neutralization showed reduced infectivity, poor ACE2 binding, and mutations are rare in public sequence databases. Using a SARS-CoV-2 XBB.1.5 monkey challenge model, P4J15-LS confers complete prophylactic protection with an exceptionally long in vivo half-life of 43 days. CONCLUSIONS: The P4J15 mAb has potential as a broad-spectrum anti-SARS-CoV-2 drug for prophylactic protection of at-risk patient populations.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Animals , Haplorhini
10.
Genome Res ; 33(8): 1409-1423, 2023 08.
Article in English | MEDLINE | ID: mdl-37730438

ABSTRACT

Krüppel-associated box (KRAB) domain-containing zinc finger proteins (KZFPs) are one of the largest groups of transcription factors encoded by tetrapods, with 378 members in human alone. KZFP genes are often grouped in clusters reflecting amplification by gene and segment duplication since the gene family first emerged more than 400 million years ago. Previous work has revealed that many KZFPs recognize transposable element (TE)-embedded sequences as genomic targets, and that KZFPs facilitate the co-option of the regulatory potential of TEs for the benefit of the host. Here, we present a comprehensive survey of the genetic features and genomic targets of human KZFPs, notably completing past analyses by adding data on close to a hundred family members. General principles emerge from our study of the TE-KZFP regulatory system, which point to multipronged evolutionary mechanisms underlaid by highly complex and combinatorial modes of action with strong influences on human speciation.


Subject(s)
Transcription Factors , Zinc Fingers , Humans , Zinc Fingers/genetics , Transcription Factors/genetics , Biological Evolution , DNA Transposable Elements/genetics , Genomics
11.
Trends Genet ; 39(11): 844-857, 2023 11.
Article in English | MEDLINE | ID: mdl-37716846

ABSTRACT

Canonical Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) act as major repressors of transposable elements (TEs) via the KRAB-mediated recruitment of the heterochromatin scaffold KRAB-associated protein (KAP)1. KZFP genes emerged some 420 million years ago in the last common ancestor of coelacanth, lungfish, and tetrapods, and dramatically expanded to give rise to lineage-specific repertoires in contemporary species paralleling their TE load and turnover. However, the KRAB domain displays sequence and function variations that reveal repeated diversions from a linear TE-KZFP trajectory. This Review summarizes current knowledge on the evolution of KZFPs and discusses how ancestral noncanonical KZFPs endowed with variant KRAB, SCAN or DUF3669 domains have been utilized to achieve KAP1-independent functions.


Subject(s)
Repressor Proteins , Zinc Fingers , Repressor Proteins/genetics , Zinc Fingers/genetics , Transcription Factors/genetics , DNA Transposable Elements , Heterochromatin
12.
Nucleic Acids Res ; 51(13): e70, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37283087

ABSTRACT

RNA-binding proteins are instrumental for post-transcriptional gene regulation, controlling all aspects throughout the lifecycle of RNA molecules. However, transcriptome-wide methods to profile RNA-protein interactions in vivo remain technically challenging and require large amounts of starting material. Herein, we present an improved library preparation strategy for crosslinking and immunoprecipitation (CLIP) that is based on tailing and ligation of cDNA molecules (TLC). TLC involves the generation of solid-phase cDNA, followed by ribotailing to significantly enhance the efficiency of subsequent adapter ligation. These modifications result in a streamlined, fully bead-based library preparation strategy, which eliminates time-consuming purification procedures and drastically reduces sample loss. As a result, TLC-CLIP displays unparalleled sensitivity, enabling the profiling of RNA-protein interactions from as few as 1000 cells. To demonstrate the effectiveness of TLC-CLIP, we profiled four endogenous RNA-binding proteins, showcasing its reproducibility and improved precision resulting from a higher occurrence of crosslinking-induced deletions. These deletions serve as an intrinsic quality metric and increase both specificity and nucleotide-resolution.


Subject(s)
RNA-Binding Proteins , RNA , RNA/chemistry , DNA, Complementary/genetics , Reproducibility of Results , RNA-Binding Proteins/metabolism , Immunoprecipitation , High-Throughput Nucleotide Sequencing/methods , Binding Sites
13.
Nat Cancer ; 4(5): 608-628, 2023 05.
Article in English | MEDLINE | ID: mdl-37127787

ABSTRACT

One key barrier to improving efficacy of personalized cancer immunotherapies that are dependent on the tumor antigenic landscape remains patient stratification. Although patients with CD3+CD8+ T cell-inflamed tumors typically show better response to immune checkpoint inhibitors, it is still unknown whether the immunopeptidome repertoire presented in highly inflamed and noninflamed tumors is substantially different. We surveyed 61 tumor regions and adjacent nonmalignant lung tissues from 8 patients with lung cancer and performed deep antigen discovery combining immunopeptidomics, genomics, bulk and spatial transcriptomics, and explored the heterogeneous expression and presentation of tumor (neo)antigens. In the present study, we associated diverse immune cell populations with the immunopeptidome and found a relatively higher frequency of predicted neoantigens located within HLA-I presentation hotspots in CD3+CD8+ T cell-excluded tumors. We associated such neoantigens with immune recognition, supporting their involvement in immune editing. This could have implications for the choice of combination therapies tailored to the patient's mutanome and immune microenvironment.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Antigens, Neoplasm/metabolism , Immunotherapy , Inflammation , Tumor Microenvironment
14.
Nature ; 617(7959): 176-184, 2023 05.
Article in English | MEDLINE | ID: mdl-37100904

ABSTRACT

Physical interactions between proteins are essential for most biological processes governing life1. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic and structural data increase. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-protein interaction networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications2-9. Here we use a geometric deep-learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features that are critical to drive protein-protein interactions10. We hypothesized that these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof of principle, we computationally designed several de novo protein binders to engage four protein targets: SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4. Several designs were experimentally optimized, whereas others were generated purely in silico, reaching nanomolar affinity with structural and mutational characterization showing highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling an approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.


Subject(s)
Computer Simulation , Deep Learning , Protein Binding , Proteins , Humans , Proteins/chemistry , Proteins/metabolism , Proteomics , Protein Interaction Maps , Binding Sites , Synthetic Biology
15.
PLoS Pathog ; 19(4): e1011206, 2023 04.
Article in English | MEDLINE | ID: mdl-37018380

ABSTRACT

Investigation of potential hosts of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is crucial to understanding future risks of spillover and spillback. SARS-CoV-2 has been reported to be transmitted from humans to various animals after requiring relatively few mutations. There is significant interest in describing how the virus interacts with mice as they are well adapted to human environments, are used widely as infection models and can be infected. Structural and binding data of the mouse ACE2 receptor with the Spike protein of newly identified SARS-CoV-2 variants are needed to better understand the impact of immune system evading mutations present in variants of concern (VOC). Previous studies have developed mouse-adapted variants and identified residues critical for binding to heterologous ACE2 receptors. Here we report the cryo-EM structures of mouse ACE2 bound to trimeric Spike ectodomains of four different VOC: Beta, Omicron BA.1, Omicron BA.2.12.1 and Omicron BA.4/5. These variants represent the oldest to the newest variants known to bind the mouse ACE2 receptor. Our high-resolution structural data complemented with bio-layer interferometry (BLI) binding assays reveal a requirement for a combination of mutations in the Spike protein that enable binding to the mouse ACE2 receptor.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cryoelectron Microscopy , Host Specificity , Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
16.
Lancet Reg Health Eur ; 24: 100547, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36474728

ABSTRACT

Background: More than two years into the COVID-19 pandemic, most of the population has developed anti-SARS-CoV-2 antibodies from infection and/or vaccination. However, public health decision-making is hindered by the lack of up-to-date and precise characterization of the immune landscape in the population. Here, we estimated anti-SARS-CoV-2 antibodies seroprevalence and cross-variant neutralization capacity after Omicron became dominant in Geneva, Switzerland. Methods: We conducted a population-based serosurvey between April 29 and June 9, 2022, recruiting children and adults of all ages from age-stratified random samples of the general population of Geneva, Switzerland. We tested for anti-SARS-CoV-2 antibodies using commercial immunoassays targeting either the spike (S) or nucleocapsid (N) protein, and for antibody neutralization capacity against different SARS-CoV-2 variants using a cell-free Spike trimer-ACE2 binding-based surrogate neutralization assay. We estimated seroprevalence and neutralization capacity using a Bayesian modeling framework accounting for the demographics, vaccination, and infection statuses of the Geneva population. Findings: Among the 2521 individuals included in the analysis, the estimated total antibodies seroprevalence was 93.8% (95% CrI 93.1-94.5), including 72.4% (70.0-74.7) for infection-induced antibodies. Estimates of neutralizing antibodies in a representative subsample (N = 1160) ranged from 79.5% (77.1-81.8) against the Alpha variant to 46.7% (43.0-50.4) against the Omicron BA.4/BA.5 subvariants. Despite having high seroprevalence of infection-induced antibodies (76.7% [69.7-83.0] for ages 0-5 years, 90.5% [86.5-94.1] for ages 6-11 years), children aged <12 years had substantially lower neutralizing activity than older participants, particularly against Omicron subvariants. Overall, vaccination was associated with higher neutralizing activity against pre-Omicron variants. Vaccine booster alongside recent infection was associated with higher neutralizing activity against Omicron subvariants. Interpretation: While most of the Geneva population has developed anti-SARS-CoV-2 antibodies through vaccination and/or infection, less than half has neutralizing activity against the currently circulating Omicron BA.5 subvariant. Hybrid immunity obtained through booster vaccination and infection confers the greatest neutralization capacity, including against Omicron. Funding: General Directorate of Health in Geneva canton, Private Foundation of the Geneva University Hospitals, European Commission ("CoVICIS" grant), and a private foundation advised by CARIGEST SA.

17.
Nat Commun ; 13(1): 7178, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36418324

ABSTRACT

The human genome contains more than 4.5 million inserts derived from transposable elements (TEs), the result of recurrent waves of invasion and internal propagation throughout evolution. For new TE copies to be inherited, they must become integrated in the genome of the germline or pre-implantation embryo, which requires that their source TE be expressed at these stages. Accordingly, many TEs harbor DNA binding sites for the pluripotency factors OCT4, NANOG, SOX2, and KLFs and are transiently expressed during embryonic genome activation. Here, we describe how many primate-restricted TEs have additional binding sites for lineage-specific transcription factors driving their expression during human gastrulation and later steps of fetal development. These TE integrants serve as lineage-specific enhancers fostering the transcription, amongst other targets, of KRAB-zinc finger proteins (KZFPs) of comparable evolutionary age, which in turn corral the activity of TE-embedded regulatory sequences in a similarly lineage-restricted fashion. Thus, TEs and their KZFP controllers play broad roles in shaping transcriptional networks during early human development.


Subject(s)
DNA Transposable Elements , Gene Regulatory Networks , Animals , Humans , DNA Transposable Elements/genetics , Primates/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Genome, Human
18.
Sci Adv ; 8(43): eabp8085, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36306355

ABSTRACT

Mammalian genomes are a battleground for genetic conflict between repetitive elements and KRAB-zinc finger proteins (KZFPs). We asked whether KZFPs can regulate cell fate by using ZFP819, which targets a satellite DNA array, ZP3AR. ZP3AR coats megabase regions of chromosome 7 encompassing genes encoding ZSCAN4, a master transcription factor of totipotency. Depleting ZFP819 in mouse embryonic stem cells (mESCs) causes them to transition to a 2-cell (2C)-like state, whereby the ZP3AR array switches from a poised to an active enhancer state. This is accompanied by a global erosion of heterochromatin roadblocks, which we link to decreased SETDB1 stability. These events result in transcription of active LINE-1 elements and impaired differentiation. In summary, ZFP819 and TRIM28 partner up to close chromatin across Zscan4, to promote exit from totipotency. We propose that satellite DNAs may control developmental fate transitions by barcoding and switching off master transcription factor genes.


Subject(s)
DNA, Satellite , Repressor Proteins , Animals , Mice , DNA, Satellite/genetics , Mammals/genetics , Oligonucleotide Array Sequence Analysis , Repressor Proteins/metabolism , Transcription Factors/genetics , Chromosomes
19.
Nat Commun ; 13(1): 4913, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35987910

ABSTRACT

The treatment of colorectal cancer (CRC) is an unmet medical need in absence of early diagnosis. Here, upon characterizing cancer-specific transposable element-driven transpochimeric gene transcripts (TcGTs) produced by this tumor in the SYSCOL cohort, we find that expression of the hominid-restricted retrogene POU5F1B through aberrant activation of a primate-specific endogenous retroviral promoter is a strong negative prognostic biomarker. Correlating this observation, we demonstrate that POU5F1B fosters the proliferation and metastatic potential of CRC cells. We further determine that POU5F1B, in spite of its phylogenetic relationship with the POU5F1/OCT4 transcription factor, is a membrane-enriched protein that associates with protein kinases and known targets or interactors as well as with cytoskeleton-related molecules, and induces intracellular signaling events and the release of trans-acting factors involved in cell growth and cell adhesion. As POU5F1B is an apparently non-essential gene only lowly expressed in normal tissues, and as POU5F1B-containing TcGTs are detected in other tumors besides CRC, our data provide interesting leads for the development of cancer therapies.


Subject(s)
Colorectal Neoplasms , Genes, Homeobox , Homeodomain Proteins , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Metastasis , Phylogeny
20.
Nat Microbiol ; 7(9): 1376-1389, 2022 09.
Article in English | MEDLINE | ID: mdl-35879526

ABSTRACT

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Viral , Cryoelectron Microscopy , Epitopes , Haplorhini , Humans , Membrane Glycoproteins , Neutralization Tests , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...